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Part I. The problem of bayesian model selection

Model selection

Components

We consider two models, M1 and M2, to explain the data x.

Under model Mi the data x are related to the parameter �i by a

density fi (xj�i ), i = 1; 2.

If no prior information is available, default priors �Ni , i = 1; 2, are
often used for estimation.

Default priors for estimation: Je�reys' prior (1961), reference prior

(Bernardo, 1979)
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Part I. The problem of bayesian model selection

Model selection. Bayes factors.

Indetermination of Bayes factors

Very often default priors are improper: �Ni (�i ) = cihi (�i ), i = 1; 2.
and therefore

BN
21(x) =

mN
2 (x)

mN
1 (x)

=
c2

c1

R
f2(xj�2)h2(�2)d�2R
f1(xj�1)h1(�1)d�1

and

P(M2jx) = P(M2)B
N
21(x)

P(M1) + P(M2)BN
21(x)

depend on the arbitrary ratio c2=c1.
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Part I. The problem of bayesian model selection

The problem

Improper priors produce arbitrary answers

Proper priors with very large variance (very often used in BUGS) are

not a satisfactory solution.

Nowadays to choose objective priors for Bayesian model selection is

an open problem
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Part I. The problem of bayesian model selection

Our proposal

In this presentation we focus on the development of default (automatic)

priors called

Integral priors

for Bayesian model selection.
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Part II. Our proposal. Integral priors

Our proposal. Integral priors
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Part II. Our proposal. Integral priors Other approaches

Other approaches

Intrinsic priors

Among the many attempts for solving the problem of using improper

priors in Bayesian model selection, Berger and Pericchi (1996)

introduced the intrinsic priors, later justi�ed by Moreno et al. (1998).

A particular choice of intrinsic priors has proved to behave well in

nested problems (Casella and Moreno, 2006). However the class of

intrinsic priors for NONNESTED problems can be very large (Cano et

al. 2004), and it is not clear enough how to choose a particular

solution.
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Part II. Our proposal. Integral priors Other approaches

Other approaches

Expected posterior priors (EPP).P�erez and Berger (2002)

For an arbitrary density m�(x) for the imaginary trainig sample x

��i (�i ) =

Z
�Ni (�i jx)m�(x)dx

A trouble with this approach is the choice of m�(x).
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Part II. Our proposal. Integral priors Other approaches

Other approaches

Some proposal for m�(x) are:

1 The predictive density derived from a model at least as simple as the
others under consideration, however

It is di�cult to precise when we consider nonnested models
It is not guaranted that ��

i
(�i ) are well de�ned

2 The empirical distribution of x based on the observed data, however

The resulting priors tend to favour the more complex model
For some applications like regression models, the empirical distribution
can be an inaccurate approximation
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Part II. Our proposal. Integral priors Integral priors

Integral priors

With the aim of solve the problems with the intrinsic priors and the EPP,

Cano, Salmer�on and Robert (2008) have proposed the integral priors for

model selection, de�ned as the solution to the following system of integral

equations

�1(�1) =

Z
�N1 (�1jx)m2(x)dx

�2(�2) =

Z
�N2 (�2jx)m1(x)dx

where mi (x) =
R
fi (x j�i )�i (�i )d�i , i = 1; 2, and x is an imaginary training

sample.
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Part II. Our proposal. Integral priors Integral priors

Integral priors

Integral priors can be seen as generalised expected posterior priors

�1(�1) is the EPP derived from m�(x) = m2(x)

�2(�2) is the EPP derived from m�(x) = m1(x)

mi (x) =
R
fi (x j�i )�i (�i )d�i , i = 1; 2

The method is a symmetrization of the EPP, but it does not requiere any

predictive density m�(x).
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Part II. Our proposal. Integral priors Integral priors

Integral priors - Motivation

Being a priori neutral comparing two

models

The models M1 and M2 are equally

valid and provided with ideal

unknown priors (the integral priors)

that yield true marginals allowing to

balance each model with respect to

the other one.
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Part II. Our proposal. Integral priors Integral priors

Properness of integral priors

Theorem. Proper distributions

If �1(�1) is a proper integral prior, then

�2(�2) =

Z
�N2 (�2jx)m1(x)dx

is a proper prior.
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Part II. Our proposal. Integral priors Integral priors

Coherence of integral priors

Theorem. Actual Bayes factor

If �1(�1) and �2(�2) are integral priors and mi (x) <1, i = 1; 2, then

B12(x) = m1(x)=m2(x)

is either an actual Bayes factor or a limit of actual Bayes factors.
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Part II. Our proposal. Integral priors Integral priors

Integral priors - existence/uniqueness

Theorem. Asociated Markov chain

Assume that observations and parameters in both models are continuous.

If the Markov chain on �1 with transition

Q(�01j�1) =
Z

g(�1; �
0

1; �2; x ; x
0)dxdx 0d�2

where

g(�1; �
0

1; �2; x ; x
0) = �N1 (�

0

1jx)f2(x j�2)�N2 (�2jx 0)f1(x 0j�1);

is recurrent, then there exists a solution f�1(�1); �2(�2)g to the integral

equations, unique up to a multiplicative constant, and �1(�1) is the
invariant measure of the Markov chain.
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Part II. Our proposal. Integral priors Integral priors

Integral priors - existence/uniqueness

When the associated Markov chain is positive recurrent there exists a

unique pair of proper integral priors.

There exists a parallel Markov chain on �2 with the same properties;

if one is (Harris) recurrent then so is the other.

This duality property can be found both in the MCMC literature and

in the decision theory (Diebolt and Robert, 1992; Eaton, 1992)

If Harris recurrence holds but the integral priors cannot be obtained,

the Bayes factor can be approximated by MCMC simulation.
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Part II. Our proposal. Integral priors Integral priors

Simulation of the Markov chain

The transition �1 ! �01 of the associated Markov chain is made of the

following four steps

1 x 0 � f1(x
0j�1)

2 �2 � �N2 (�2jx 0)

3 x � f2(x j�2)

4 �01 � �N1 (�
0

1jx)

(Universidad de Murcia, CIBERESP) METODOS BAYESIANOS11. MADRID Madrid - Noviembre 2011 20 / 78



Part II. Our proposal. Integral priors Some initial examples

Some initial examples

Point null hypothesis testing

Location models

Scale models

The one way random e�ects model

(Universidad de Murcia, CIBERESP) METODOS BAYESIANOS11. MADRID Madrid - Noviembre 2011 21 / 78



Part II. Our proposal. Integral priors Some initial examples

Point null hypothesis testing

Testing H0 : � = �� versus H1 : � 6= �� is equivalent to consider the models

M1 : f (x j��) vs M2 : f (x j�); � 2 �

The integral priors are �1(�1) = ���(�1) and

�2(�2) =

Z
�N2 (�2jx)f1(x j��)dx :

(=Intrinsic prios)
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Part II. Our proposal. Integral priors Some initial examples

Location models - a nonnested case

M1 : f1(x j�1) = f1(x � �1); �1 2 R

M2 : f2(x j�2) = f2(x � �2); �2 2 R

The initial default priors are �Ni (�i ) = ci , i = 1; 2 and the minimal trainig

sample size is one.

The priors �1(�1) = �2(�2) = 1 are integral priors.

Recurrence: case by case.
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Part II. Our proposal. Integral priors Some initial examples

Location models - a nonnested case

The normal versus the double exponential model

M1 : N(�; 1); � 2 R; �N1 (�1) = c1

M2 : DE (�; 1); � 2 R; �N2 (�) = c2

1 x 0 = � + "1; "1 � N(0; 1)

2 � = x 0 + "2; "2 � DE (0; 1)

3 x = �+ "3; "3 � DE (0; 1)

4 �01 = x + "4; "4 � N(0; 1)

Expressing the four moves at one

�0 = � + "1 + "2 + "3 + "4;

the Markov chain is a null recurrent

random walk, and �i (�i ) = 1 are the

integral priors.
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Part II. Our proposal. Integral priors Some initial examples

Scale models - a nonnested case

M1 : f1(x j�1) = 1

�1
f1(x=�1); �1 > 0

M2 : f2(x j�2) = 1

�2
f2(x=�2); �2 > 0

The initial default priors are �Ni (�i ) = ci=�i , i = 1; 2 and the minimal

trainig sample size is one.

The priors �1(�1) = 1=�1 and �2(�2) = 1=�2 are integral priors.

Recurrence: case by case.
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Part II. Our proposal. Integral priors Some initial examples

Scale models - a nonnested case

The normal versus the double exponential model

M1 : N(0; �
2
1); �1 2 R

+; �N1 (�1) = c1=�1

M2 : DE (0; �2); �2 2 R
+; �N2 (�2) = c2=�2

1 x 0 = �1"1; "1 � N(0; 1)

2 �2 = jx 0j="2; "2 � Exp(1)

3 x = �2"3; "3 � DE (0; 1)

4 �01 = jx j="4; "4 � N(0; 1)

Expressing the four moves at one

�01 = �1
j"1"3j
"2j"4j ;

the Markov chain is a null recurrent

random walk in log �1, and
�i (�i ) = 1=�i are the integral priors.
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Part II. Our proposal. Integral priors Some initial examples

The one way random e�ects model

We consider the model

yij = �+ ai + eij ; i = 1; :::; k ; j = 1; :::; n;

where eij � N(0; �2) and ai � N(0; �2a) are independent.

We are interested in the selection problem between the models with

parameters

M1 : �1 = (�1; �1; 0) and M2 : �2 = (�2; �2; �a)

�N1 (�1) = c1=�1 and �N2 (�2) = c2�
�2
2 (1 + (�a=�2)

2)�3=2
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Part II. Our proposal. Integral priors Some initial examples

The one way random e�ects model - the Markov chain

The transition �1 ! �01 of the Markov chain associated with the integral

priors for this example, can be written as

�01 = �1 + �1�

�01 = �1�

where � and � are random variables with a complex distribution but easy

to simulate.
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Part II. Our proposal. Integral priors Some initial examples

The one way random e�ects model - the Markov chain

Proposition

1 The reference priors �1(�1) = 1=�1 and

�2(�2) = ��22 (1 + (�a=�2)
2)�3=2

are integral priors.

2 If g(�1) = �(�1) is an invariant measure for the Markov chain on �1,

then g(�1) = �1(�1) = 1=�1 (up to a multiplicative constant).
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Part III. How the methodology operates

How the methodology

operates
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Part III. How the methodology operates

Integral priors from simulation

For the above examples, integral priors have been found explicitly and

most of the times they were the initial default priors after the

adjustment of the constants ci .

However, when we are not able to �nd the integral priors we can use

the simulation of the associated Markov chain

to approximate the Bayes factor.
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Part III. How the methodology operates

A toy example. Testing a normal mean with known variance

A not so toy example. One-sided testing for the exponential

distribution

Constrained imaginary training samples ) Existence and uniqueness

of proper integral priors.

Testing a normal mean with unknown variance using constrained
imaginary training samples

Testing in Binomial regression models
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Part III. How the methodology operates A toy example

A toy example. Testing a normal mean with known
variance

With this example we explain how our methodology works.

Suppose that x = (x1; :::; xm) is a random sample form N(�; �2), with �
known.

We consider testing H0 : � = �0 versus H1 : � 6= �0.

The integral priors are �1(�1) = ��0(�1) and �2(�2) = N(�0; 2�
2).
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Part III. How the methodology operates A toy example

A toy example. Testing a normal mean with known
variance

The transition of the Markov chain on �2 now is made of two steps

1 x 0 = �0 + "1; "1 � N(0; �2)

2 �02 = x 0 + "2; "2 � N(0; �2)

The Bayes factor B21(x) is

1p
2m + 1

exp

�
m2(x� �0)

2

(2m + 1)�2

�

On the other hand, we can simulate the Markov chain (�t2) and

B21(x) �
PL

t=1 f (xj�t2)=L
f (xj�0)
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Part III. How the methodology operates A toy example

A toy example. Testing a normal mean with known
variance

�0 = 0

m = 1; 5; 10; 20; 30; 50
� = 1; 2; 3

We have generated samples of size m from N(�; �2), ranging � from �1 to

1 step equal to 0:005.

Exact and approximate posterior probabilities (Markov chain with length

10000)
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Part III. How the methodology operates A not so toy example

A not so toy example.
One-sided testing for the exponential distribution

Let x = (x1; :::; xm) be a sample from the exponential distribution with

mean �.

H0 : � 2 (0; 1) vs H1 : � > 1

M1 : f1(x j�1) = 1

�1
exp(�x=�1); �1(�1) = c1

�1
1(0;1)(�1)

M2 : f2(x j�2) = 1

�2
exp(�x=�2); �2(�2) = c2

�2
1(1;+1)(�2)

(Universidad de Murcia, CIBERESP) METODOS BAYESIANOS11. MADRID Madrid - Noviembre 2011 39 / 78



Part III. How the methodology operates A not so toy example

A not so toy example.
One-sided testing for the exponential distribution

Let x = (x1; :::; xm) be a sample from the exponential distribution with

mean �.

H0 : � 2 (0; 1) vs H1 : � > 1

M1 : f1(x j�1) = 1

�1
exp(�x=�1); �1(�1) = c1

�1
1(0;1)(�1)

M2 : f2(x j�2) = 1

�2
exp(�x=�2); �2(�2) = c2

�2
1(1;+1)(�2)

(Universidad de Murcia, CIBERESP) METODOS BAYESIANOS11. MADRID Madrid - Noviembre 2011 39 / 78



Part III. How the methodology operates A not so toy example

A not so toy example.
One-sided testing for the exponential distribution

No intrinsic priors exist for this problem

The typical encompassing approach does not give an actual Bayes

factor

Moreno (2005) has proposed an alternative solution

The methodology of the integral priors works
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Part III. How the methodology operates A not so toy example

A not so toy example.
One-sided testing for the exponential distribution

Integral priors - Markov chain

The transition of the asocciated Markov chain is made of the following

steps:

1 x 0 = ��1log u1
2 �2 = �x 0=log(u2(1� e�x

0

) + e�x
0

)

3 x = ��2log u3
4 �01 = (1� 1

x
log u4)

�1

where ui are i.i.d � U(0; 1)
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Part III. How the methodology operates A not so toy example

A not so toy example.
One-sided testing for the exponential distribution

The transition density is bounded

Q(�01j�1) �
Z

�N1 (�
0

1jx)f2(x j�2)
�Z

��22 e�x
0=�2f1(x

0j�1)dx 0
�
dxd�2

=

Z
�N1 (�

0

1jx)f2(x j�2)
1

�2(�1 + �2)
dxd�2

�
Z

�N1 (�
0

1jx)f2(x j�2)
�2(1 + �2)

dxd�2 =: q(�
0

1)

where 0 <
R 1
0 q(�01)d�

0

1 � 1.

Therefore the Markov chain satis�es the Doeblin condition ) integral

priors are unique and proper priors.

Integral priors can be obtained simulating the Markov chain.
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Part III. How the methodology operates A not so toy example

Histogram of �1(�1) by simulation of the Markov chain
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Part III. How the methodology operates A not so toy example

Histogram of �2(�2) by simulation of the Markov chain
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Part III. How the methodology operates A not so toy example

Posterior probability of the null: Integral priors - Intrinsic
priors (Moreno (2005))

(Universidad de Murcia, CIBERESP) METODOS BAYESIANOS11. MADRID Madrid - Noviembre 2011 45 / 78



Part III. How the methodology operates Constrained imaginary trainig samples

Constrained imaginary trainig samples

The recurrence of the associated Markov chain is of fundamental

importance for the application of integral priors

However it can be di�cult to asses for complex models

We propose using a constrain on the imaginary training samples space

to ensure that the associated Markov chain is positive recurrent, and

therefore the existence and the uniqueness of proper integral priors.
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Part III. How the methodology operates Constrained imaginary trainig samples

Constrained imaginary trainig samples

Let A be a subset of the imaginary training samples space.

The constrain is applied in steps 1 and 3 of the transition �1 ! �01.

1 x � f1(x j�1)
2 �2 � �N2 (�2jx)
3 x 0 � f2(x

0j�2)
4 �01 � �N1 (�

0

1jx 0)

1 x � f A1 (x j�1) / f1(x j�1)IA(x)
2 �2 � �N2 (�2jx)
3 x 0 � f A2 (x 0j�2) / f2(x

0j�2)IA(x 0)
4 �01 � �N1 (�

0

1jx 0)

The idea behind this is that the constrain on the imaginary training

samples prevents the Markov chain from escaping to in�nity and therefore

guarantees the existence and the uniqueness of an invariant probability

measure
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Part III. How the methodology operates Constrained imaginary trainig samples

Theorem

If the set A is chosen such that the function

KA(x jx�) = IA(x
�)

Z
f A1 (x j~�1)�N1 (~�1j~x)f A2 (~x j�02)�N2 (�02jx�)d�02d~xd ~�1

satis�es the minorizing condition KA(x jx�) � gA(x), for some function

gA(x) with � =
R
gA(x)dx > 0, then there exists a unique invariant

probability for the Markov chain with imaginary training samples space A

1 x � f A1 (x j�1) / f1(x j�1)IA(x)
2 �2 � �N2 (�2jx)
3 x 0 � f A2 (x 0j�2) / f2(x

0j�2)IA(x 0)
4 �01 � �N1 (�

0

1jx 0)
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Part III. How the methodology operates Constrained imaginary trainig samples

Corollary

If A is a compact set and the model M2 is regular enough to satisfy

inff�N2 (�02jx 01) : x 01 2 Ag > 0 8�02;
then there exists a unique invariant probability for the Markov chain with

imaginary training samples space A.

If A is a compact set and the model M1 is regular enough to satisfy

inff�N1 (�01jx 02) : x 02 2 Ag > 0 8�01;
then there exists a unique invariant probability for the Markov chain with

imaginary training samples space A.
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Part III. How the methodology operates Constrained imaginary trainig samples

Testing a normal mean with unknown variance using
constrained imaginary training samples

Suppose the data x are i.i.d. N(�; �2) and we consider testing H0 : � = 0

versus H1 : � 6= 0. A Bayesian setting for this problem is that of choosing

between the models

M1 : N(xj0; �21I)
and

M2 : N(xj�21; �22I):

Here a reasonable choice for the compact set is

A = f(x1; x2) 2 R
2 : jx1j � b; jx2j � bg

with b > 0.
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Part III. How the methodology operates Constrained imaginary trainig samples

The Markov chain with imaginary training samples space A

1 xi is simulated from the density proportional to N(xi j0; �21)I[�b;b](xi ),
i = 1; 2, that is, a truncated normal density.

2

�22 =
x2 � x2

v
and �2 � N(x ; �22=2);

with v simulated from a gamma density with shape 1=2 and scale 1.

3 x 0i is simulated from the density proportional to

N(x 0i j�2; �22)I[�b;b](x 0i ), i = 1; 2.

4 �01 =

q
x 0

2
1 +x 0

2
2

2w ; where w � Exp(1).
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with v simulated from a gamma density with shape 1=2 and scale 1.

3 x 0i is simulated from the density proportional to

N(x 0i j�2; �22)I[�b;b](x 0i ), i = 1; 2.

4 �01 =

q
x 0

2
1 +x 0

2
2

2w ; where w � Exp(1).
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Part III. How the methodology operates Constrained imaginary trainig samples

For a sample size of n = 10 we approximate the Bayes factor

BA
12(x; x

2).

The imaginary training samples spaces A we are used are the ones

de�ned for b = 10; 25; 50 and 100, respectively.

The results are based on 100000 transitions of the associated Markov

chain.

We compare our results with the ones obtained using intrinsic priors.
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Part III. How the methodology operates Constrained imaginary trainig samples

x2 x b=10 b=25 b=50 b=100 Intrinsic x � 3b�
1 0 0.814 0.809 0.817 0.812 0.789 (-3.2,3.2)

0.2 0.786 0.782 0.788 0.785 0.757 (-2.9,3.3)

0.4 0.675 0.672 0.677 0.676 0.635 (-2.5,3.3)

0.6 0.395 0.398 0.397 0.401 0.351 (-1.9,3.1)

0.8 0.058 0.058 0.056 0.058 0.049 (-1.1,2.7)

1 0.000 0.000 0.000 0.000 0.000 (1.0,1.0)

10 0 0.828 0.820 0.810 0.809 0.789 (-10.0,10.0)

0.2 0.826 0.816 0.807 0.806 0.786 (-9.8,10.2)

0.4 0.818 0.808 0.798 0.798 0.777 (-9.5,10.3)

0.6 0.804 0.793 0.783 0.784 0.761 (-9.2,10.4)

0.8 0.783 0.770 0.761 0.762 0.736 (-8.9,10.5)

1 0.752 0.737 0.728 0.731 0.701 (-8.5,10.5)

Table: Posterior probabilities of the simple model for di�erents values of x , x2

and b and for the intrinsic priors
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x2 x b=10 b=25 b=50 b=100 Intrinsic x � 3b�
50 0 0.806 0.826 0.814 0.807 0.789 (-22.4,22.4)

0.2 0.806 0.826 0.813 0.806 0.788 (-22.2,22.6)

0.4 0.804 0.825 0.811 0.804 0.786 (-21.9,22.7)

0.6 0.802 0.822 0.809 0.801 0.783 (-21.7,22.9)

0.8 0.798 0.819 0.805 0.797 0.779 (-21.4,23.0)

1 0.793 0.814 0.799 0.792 0.774 (-21.1,23.1)

Table: Posterior probabilities of the simple model for di�erents values of x , x2

and b and for the intrinsic priors
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Part III. How the methodology operates Testing in Binomial regression models

Testing in binomial regression models

Binomial regression models are used very often to investigate

associations and risks in epidemiological studies where the goal is to

asses the e�ect of speci�c exposure factors.

We apply our methodology to binomial regression models

Logistic regression (link=logit) is one of the main techniques in

analytical epidemilogy, but other link functions are possible (probit,

complementary log-log, Cauchit).
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Part III. How the methodology operates Testing in Binomial regression models

literature

The literature on objective prior distributions, we mean automatic or

near it, for testing in binomial regression models is very limited.

Intrinsic priors for binomial regression models with a general link

function has not been developed.

Leon-Novelo et al. (2011) have applied the intrinsic priors to the

problem of variable selection in the probit regression model using the

relation between the probit model and the normal regression model.

Integral priors can be directly applied to other link functions.

Saban�es and Held (2011) have developed an extension of the Zellner's

g -prior for generalized linear models, however this extension need the

speci�cation of the hyperprior distribution for g .
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Part III. How the methodology operates Testing in Binomial regression models

The model

Notation

Suppose f(yi ; xi ); i = 1; :::; ng are independent observations
yi � Ber(pi ), xi = (xi1; :::; xik) vector of covariates

X the matrix with rows x1; :::; xn
Link: g(pi ) = xi�, i = 1; :::; n
� = (�1; :::; �k)

T 2 � the vector of regression coe�cients

Testing: for a �x given value k0 we consider the hypothesis testing

H0 : �1 = ::: = �k0 = 0

H1 : 9 k� 2 f1; :::; k0g such that�k� 6= 0
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Part III. How the methodology operates Testing in Binomial regression models

As a model selection problem

M1 : yi jxi ; �1 � Ber(pi ); g(pi ) = xi�1; i = 1; :::; n
�1 = (�11; :::; �1k)

T 2 �1 � R
k ; �1j = 08j = 1; :::; k0

M2 : yi jxi ; �2 � Ber(pi ); g(pi ) = xi�2; i = 1; :::; n
�2 = (�21; :::; �2k)

T 2 �2 � R
k

�1 and �2 are vectors of dimension k . The numbers of unknown

parameters is k � k0 in model M1 and k in model M2
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Part III. How the methodology operates Testing in Binomial regression models

Integral priors

Some integrals involved in the de�nition of integral priors become sums.

The transition of the associated Markov chain is

Q(�02j�2) =
X
z1;z2

Z
�N2 (�

0

2jz2)f1(z2j�1)�N1 (�1jz1)f2(z1j�2)d�1

=
X
z1;z2

�N2 (�
0

2jz2)H(z2jz1)f2(z1j�2);

where H(z2jz1) =
R
f1(z2j�1)�N1 (�1jz1)d�1
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Part III. How the methodology operates Testing in Binomial regression models

Integral priors

The function H(z2jz1) reaches its minimum in some point (z�1 ; z
�

2 ).

Moreover H(z�2 jz�1 ) > 0 since H(z�2 jz�1 ) = 0 yieldsZ
f1(z

�

2 j�1)�N1 (�1jz�1 )d�1 = 0:

Therefore

Q(�02j�2) � H(z�2 jz�1 )
X
z2

�N2 (�
0

2jz2)
X
z1

f2(z1j�2)

= H(z�2 jz�1 )
X
z2

�N2 (�
0

2jz2);

which means that the Doeblin condition is satis�ed and the Markov chain

has a unique invariant distribution that can be obtained by simulation.
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Part III. How the methodology operates Testing in Binomial regression models

Imaginary trainig sample

Transition �2 ! �02

1 z1 � f2(z1j�2)
2 �1 � �N1 (�1jz1)
3 z2 � f1(z2j�1)
4 �02 � �N2 (�

0

2jz2).

To generate the Markov chain associated with the integral priors two

things are required

generate imaginary training samples

simulate from the corresponding posteriors
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Part III. How the methodology operates Testing in Binomial regression models

Imaginary trainig sample

Training samples are subsets of the data such that the corresponding

posteriors are proper.

If ~y = (~y1; :::; ~yk) is a subset of the data and the submatrix ~X with rows

~x1; :::; ~xk of X associated to ~y is of full rank, then Je�reys prior , �N(�j ~X ),

and the corresponding posterior, �N(�j~y ; ~X ), are proper (Ibrahim and

Laud (1991)).

The dimension of the training samples will be k1 = k � k0 and k ,

respectively, and the corresponding ~X should be of full rank.
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Part III. How the methodology operates Testing in Binomial regression models

Imaginary trainig sample

Casella and Moreno (2009), Berger and Pericchi (2004), Consonni et

al. (2011), among others, applying intrinsic priors , have found

convenient to increase the size of the imaginary training samples

when the data come from a binomial distribution.

One way to achieve this in the case of binomial regression models is

to take more than a Bernoulli variable ~yi for each row ~xi .

We propose that the number of Bernoulli variables be a discrete

uniform random variable between 1 and the number N(x) of times

that each row x is repeated in the matrix X

When a covariate is continuous, we can work with a discretized

version to compute N(x). Note that discretization of a continuous

variable is a very common strategy.
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Part III. How the methodology operates Testing in Binomial regression models

Algorithm to run the Markov chain

Step 1. Simulation of z1.

Randomly select k1 = k � k0 rows of the matrix X : ~x1; :::; ~xk1 , with
the condition that if R1 is the submatrix of X with these rows, then

jR2j 6= 0 where R2 is the submatrix of R1 with the columns

k0 + 1; :::; k .

Simulate qi � Uf1; :::;N1(~xi )g, i = 1; :::; k1, where N1(~xi ) is the

number of times that the vector with the columns k0 + 1; :::; k of ~xi
appears in the design matrix of model M1.

Independently simulate ~y ti � Ber(g�1(~xi�2)), t = 1; :::; qi ,
i = 1; :::; k1, and take z1 = (~y1; :::; ~yk1) where ~yi = (~y1i ; :::; ~y

qi

i ).
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Part III. How the methodology operates Testing in Binomial regression models

Algorithm to run the Markov chain

Step 2. Simulation of �1.

Simulate ~pi � Beta
�
~pi jqi ~yi + 1=2; qi

�
1� ~yi

�
+ 1=2

�
, i = 1; :::; k1, and

compute

v = R�12 (g(~p1); :::; g(~pk1))
T :

Take �1 = (0; :::; 0; vT )T .
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Part III. How the methodology operates Testing in Binomial regression models

Algorithm to run the Markov chain

Step 3. Simulation of z2.

Randomly select k rows of the matrix X : ~x1; :::; ~xk , with the condition

that if S is is the submatrix of X with these rows, then jS j 6= 0.

Simulate qi � Uf1; :::;N2(~xi )g, i = 1; :::; k , where N2(~xi ) is the

number of times that ~xi appears in the design matrix of model M2.

Independently simulate ~y ti � Ber(g�1(~xi�1)), t = 1; :::; qi ,
i = 1; :::; k , and take z2 = (~y1; :::; ~yk) where ~yi = (~y1i ; :::; ~y

qi

i ).

(Universidad de Murcia, CIBERESP) METODOS BAYESIANOS11. MADRID Madrid - Noviembre 2011 66 / 78



Part III. How the methodology operates Testing in Binomial regression models

Algorithm to run the Markov chain

Step 3. Simulation of z2.

Randomly select k rows of the matrix X : ~x1; :::; ~xk , with the condition

that if S is is the submatrix of X with these rows, then jS j 6= 0.

Simulate qi � Uf1; :::;N2(~xi )g, i = 1; :::; k , where N2(~xi ) is the

number of times that ~xi appears in the design matrix of model M2.

Independently simulate ~y ti � Ber(g�1(~xi�1)), t = 1; :::; qi ,
i = 1; :::; k , and take z2 = (~y1; :::; ~yk) where ~yi = (~y1i ; :::; ~y

qi

i ).

(Universidad de Murcia, CIBERESP) METODOS BAYESIANOS11. MADRID Madrid - Noviembre 2011 66 / 78



Part III. How the methodology operates Testing in Binomial regression models

Algorithm to run the Markov chain

Step 3. Simulation of z2.

Randomly select k rows of the matrix X : ~x1; :::; ~xk , with the condition

that if S is is the submatrix of X with these rows, then jS j 6= 0.

Simulate qi � Uf1; :::;N2(~xi )g, i = 1; :::; k , where N2(~xi ) is the

number of times that ~xi appears in the design matrix of model M2.

Independently simulate ~y ti � Ber(g�1(~xi�1)), t = 1; :::; qi ,
i = 1; :::; k , and take z2 = (~y1; :::; ~yk) where ~yi = (~y1i ; :::; ~y

qi

i ).

(Universidad de Murcia, CIBERESP) METODOS BAYESIANOS11. MADRID Madrid - Noviembre 2011 66 / 78



Part III. How the methodology operates Testing in Binomial regression models

Algorithm to run the Markov chain

Step 4. Simulation of �02.

Simulate ~pi � Beta
�
~pi jqi ~yi + 1=2; qi

�
1� ~yi

�
+ 1=2

�
, i = 1; :::; k , and

compute

v = S�1(g(~p1); :::; g(~pk))
T :

Take �02 = v .

(Universidad de Murcia, CIBERESP) METODOS BAYESIANOS11. MADRID Madrid - Noviembre 2011 67 / 78



Part III. How the methodology operates Testing in Binomial regression models

Computing the integral Bayes factor

To compute the Bayes factor B21(y) associated to the integral priors

we can use the simulation of the Markov chain.

Actually with this procedure we obtain two parallel Markov chains

(�t1)t and (�t2)t , with stationary probability distributions the integral

priors.

Then

lim
T!1

PT
t=1 f2(yj�t2)PT
t=1 f1(yj�t1)

= B21(y)

and this result can be used to compute the Bayes factor.
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Part III. How the methodology operates Testing in Binomial regression models

Computing the integral Bayes factor

The major di�culty with this approach is that when the likelihood is

in conict with the integral prior, most of the simulations �ti will have
small likelihood values, which means that the approximation

procedure can be ine�cient.

This problem can be solved by importance sampling and a

nonparametric density estimation of the integral priors
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Part III. How the methodology operates Testing in Binomial regression models

Computing the integral Bayes factor

Concretely, if �̂i (�i ) is a nonparametric density estimation of �i (�i ),
and Gi (�i ) is a normal approximation to the posteriori density, thenZ

fi (yj�i )�i (�i )d�i �
Z

fi (yj�i )�̂i (�i )
Gi (�i )

Gi (�i )d�i :

Simulating Gi (�i ) and evaluating fi (yj�i ), �̂i (�i ) and Gi (�i ), we can
approximate the Bayes factor.
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Part III. How the methodology operates Testing in Binomial regression models

Example. Breast cancer mortality. Logistic regression.

Table 3 presents data on the relation of receptor level and stage to survival

in a cohort of women with breast cancer.

Stage ReceptorLevel Deaths Total

1 1 2 12

1 2 5 55

2 1 9 22

2 2 17 74

3 1 12 14

3 2 9 15

Table: Data relating receptor level and stage to 5-year breast cancer mortality.

First, we are going to compare the model with the intercept and the stage

versus the full model. From the classical logistic regression perspective we

�nd an association between the receptor level and mortality, with 2:51 as

the estimation for the OR and a p-value of 0:02.
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Part III. How the methodology operates Testing in Binomial regression models

P(M2jy): importance sampling based on the normal distribution

centered at the maximum likelihood estimator �̂i and covariance 2V̂i

where V̂i is the estimated covariance of �̂i .

�1(�1) and �2(�2): simulation of the Markov chain and kernel density

estimation. For the values T = 1000, 5000 and 10000 we have run 50

Markov chains of length T and the importance sampling has been

carried out with T simulations too.

The mean and the standard deviation of the 50 estimations of

P(M2jy) appears in table 4.

T = 1000 T = 5000 T = 10000

Mean 0:710 0:722 0:726
SD (0:020) (0:010) (0:008)

Table: Estimations of the posterior probability of the model M2 running 50
Markov chains of length T and importance sampling based on T simulations.
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Part III. How the methodology operates Testing in Binomial regression models

Figure: Integral priors obtained based on 50000 iterations of the associated
Markov chain

In the �rst row there are the priors for the coe�cient of the receptor level

and the intercept; the second row corresponds to the stage.
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Part III. How the methodology operates Testing in Binomial regression models

Example. Low birth weight. Logistic regression.

The birthwt data frame has 189 rows and 10 columns (see the object

birthwt from the statistical software R).

Data were collected at the Baystate Medical Center, Spring�eld,

Massachusetts during 1986 to attempt to identify which factors

contributed to an increased risk of low birth weight infants.

Information was recorded for 189 women of whom 59 had low birth weight

infants.

(Universidad de Murcia, CIBERESP) METODOS BAYESIANOS11. MADRID Madrid - Noviembre 2011 74 / 78



Part III. How the methodology operates Testing in Binomial regression models

Example. Low birth weight. Logistic regression.

We have studied the association between the low birth weight and

smoking (two levels), race (three levels), previous premature labours (two

levels) and age (�ve levels, de�ned taking as included the endpoints, 18,

20 25, and 30, respectively).

We have considered as the reduced model the one without the variable

smoking. The p-value associated to smoking is 0:014 (OR = 2:62).
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Part III. How the methodology operates Testing in Binomial regression models

Example. Low birth weight. Logistic regression.

The Bayesian results are based on 30000 iterations of the Markov chain

and 10000 simulations for the importance sampling

The posterior probability of smoking having e�ect over the low birth

weight was 0:67

In the next �gure appear the integral prior distributions of the 9 regression

coe�cients. The integral priors of all regression coe�cients under model

M2 are very similar except the one for the smoking coe�cient, this prior is

more concentrated about the null hypothesis.
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Part III. How the methodology operates Testing in Binomial regression models

Example. Low birth weight. Logistic regression.

Figure: Integral prior distributions for model M2
(Universidad de Murcia, CIBERESP) METODOS BAYESIANOS11. MADRID Madrid - Noviembre 2011 77 / 78



Part III. How the methodology operates The end

Thank you very much
for your attention
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